If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12n^2+23n+5=0
a = 12; b = 23; c = +5;
Δ = b2-4ac
Δ = 232-4·12·5
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-17}{2*12}=\frac{-40}{24} =-1+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+17}{2*12}=\frac{-6}{24} =-1/4 $
| 21+7p=4p-7 | | 8y-y=35 | | 3a+6a+a=9a | | 11^x-6=5 | | 3^(2x-1)=27 | | 20/x+6=36/2x-6 | | 9*11^x-6=45 | | 24=2w+4w | | 3^(2x-2)=27 | | a+(−4)=−13 | | 10-5y=18-4y | | 3x-10=1/3 | | -2x^2+17=8x-1 | | 17=5(y-2)-8y | | 3x-16=2x+3 | | 3x^{^2}-4x+8+x=2x^{^2}-3x+12 | | 1/5+1/7=1/x | | 12+7r=161 | | x+-(12)=15 | | 9x-(5×-2)-×=8×(4-2×) | | 4x-18=17+x | | 24=5-a | | 7x-2=2-x | | -x^2+10x=8 | | 4x−9=39 | | 0.06n=14 | | 9b-8=-80 | | 4w-17=43 | | 160+(1.15x)=0.5x | | 2x+1+4x=33 | | 15+b=-3 | | 31/3x-2=4 |